PLAN: Strategy of intervention on Strategy of management of the problems heat problems BIOMED Research Predicted Heat Strain Development of PHS index (PHS) MODEL Algorithms Limit criteria Validation J. Malchaire Jacques.Malchaire@uclouvain.be Demo of the programme www.deparisnet.be BOHS 15-11-2001 J. Malchaire Climatic factors, M, clo Strategy for the management of the thermal working conditions **Predicted Heat Strain Prediction SW, Tco, DLE** BOHS 15-11-2001 J. Malchaire BOHS 15-11-2001 J. Malchaire

Symbol	Term	Unit	Symbol in the program
	code =1 if walking speed entered, 0 otherwise	-	defspeed
-	code =1 if walking direction entered, 0 otherwise		defdir
α	fraction of the body mass at the skin temperature	dimensionless	
α	skin-core weighting at time i	dimensionless	TskTcrwg
α	skin-core weighting at time (i-1)	dimensionless	TskTcrwg0
e	emissivity of the bare skin	dimensionless	-
т	time constant	min	
e e	angle between walking direction and wind direction	dearees	Theta
Anu	Dubois body surface area	square metre	Adu
A.	fraction of the body surface covered by the clothing	dimensionless	Ap
A,	effective radiating area of the body	dimensionless	Ardu
C	heat flow by convection at the skin surface	Watts per square metre	Conv
20	water latent heat of evaporation	Joules per kilogram	
C orr, cl	correction for the dynamic clothing insulation for totally clothed subjects	dimensionless	CORcI
C orr, la	correction for the dynamic boundary layer insulation	dimensionless	CORia
C orr,tot	correction for the dynamic clothing insulation as a function of the actual clothing	dimensionless	CORtot
C orr E	correction for the dynamic permeation rate	dimensionless	CORe
C _p	specific heat of dry air at constant pressure	Joules per kilogram of dry air	-
Cres	heat flow by respiratory convection	Watts per square metre	Cres
€sp	specific heat of the body	Watts per square meter per degree celsius	spHeat
D _{lim}	allowable exposure duration	min	Dlim
D _{lim tre}	allowable exposure duration for heat storage	min	Dlimtre
D _{limloss50}	allowable exposure duration for water loss, mean subject	min	Dlimloss50
D lim loss 95	allowable exposure duration for water loss, 95% of the working population	min	Dlimloss95
D _{max}	maximum water loss	grams	Dmax
D _{max50}	maximum water loss to protect a mean subject	grams	Dmax50
D _{max95}	maximum water loss to protect 95% of the working population	grams	Dmax95
dSi	heat stored during the last time increment	Watts per square metre	dStorage
dS _{eq}	body heat storage rate for increase of core temperature associated with the metabolic rate	Watts per square meter	dStoreq

OH partners

- Employees
- Management
- Safety officers
- Occ. physicians
- Occ. hygienists
- Ergonomists
- Experts

Objectives		Stage 1	Stage 2	Stage 3	Stage 4
Cojectites		"Screening"	"Observation"	"Analysis"	"Expertise"
 Coordination of all partners Qualitative va quantitative 	• When?	Systematically	When a "problem" is detected	More complicated Cases	Very complex cases
•« Evaluation » vs « Measurements »	• How?	Opinions	Qualitative observations	Ordinary measurements	Specialised measurements
 Prevention vs assessment 	Cost?	Very low	Low	Average	High
 Cost-effectiveness 	• Duration (order of magnitude)	10 min	2 hours	1 day	A few days
 Methods applicable by SMEs 	• By whom?	Workers + company management	Workers + company management	Same + specialists	Same + specialists + experts
	Knowledge working conditions ergonomics	Very high Low	High Average	Average High	Low Specialised
BOHS 15-11-2001 J. Malchaire 9	BOHS 15-11-2001 J. Malchaire				
Characteristics	Prevent	ion St	rategy	/ SO	BANE
 Participative Workers play the essential role in the dynamics of improvement Occupational health specialists and experts are helping Structured in 4 complementary stages Requiring complementary knowledge and competencies 	Sophistication cost Expertise	Expertise Analys Obse So	ais ervation creenir	REVENTIO 19	
	<u> </u>	Numbe	r of work	situations	

First stage: SCREENING

- To get an overview of the working conditions
 - for the main factors related to safety, health and well being
- Conclusions:

BOHS 15-11-2001 J. Malchaire

Are there complaints related to the climatic conditions?

Stage 2 : OBSERVATION

Stage 1: SCREENING

Collect information about the work situation, in general:

- the working conditions
- the physical conditions: heat, noise, pollution,...
- the psychosocial factors

Define what is determinant for the workers health and well being

BOHS 15-11-2001 J. Malchaire

17

•

OBSERVATION designed to:

- Identify particular circumstances, specific tasks, unusual working conditions where a "problem" exists
- Determine what to do to reduce or eliminate these problems: straightforward solutions
- By or with the help of the workers themselves.

Conclusion:

- ♦Is the "problem" satisfactorily controlled or not?
- If not, the assistance of specialists is needed.

Criteria for OBSERVATION

Designed for the workers and their management

- Simple to understand by untrained people
- Avoiding concepts or terms not readily understood
- Easy to use, maximum 1 hour for a specific circumstance of work
- Based on simple OBSERVATIONS (no measurement)
- Oriented towards prevention

Stage 2: Air temperature

Actual situation Causes and sources Actions of prevention – improvement Future situation

- -3 Generally freezing
- -2 Generally between 0 and 10°C.
- -1 Generally between 10 and 18°C
- 0 Generally between 18 and 25°C
- Generally between 25 and 32°C
- ² Generally between 32 and 40°C
- ³ Generally greater than 40°C

Stage 2: OBSERVATION

Procedure

Discussion of

- The working conditions
- The technical process
- The characteristics of the heat or cold sources
- The possibilities of control measures.
- Describe the working condition known to or likely to raise a thermal problem
- Evaluate the situation for each of the six parameters separately:

BOHS 15-11-2001 J. Malchaire

Air temperature: Solutions

- Locate the sources of heat or cold in the periphery
- Eliminate the sources of hot or cold air
- Insulate the hot surfaces
- Exhaust hot or cold air locally
- Ventilate without draughts
- Use clothes with lower or higher insulation

Stage 2: Humidity

Actual situation

Causes and sources

- -1 Dry throat/eyes after 2-3 hours
- 0 Normal
- 1 Moist skin
- 2 Skin completely wet
- Actions of prevention improvement
 - Eliminate the leaks of vapour and water
 - Enclose all evaporating surface
 - •Use clothes waterproof but permeable to vapour
 - •...

Future situation

BOHS 15-11-2001 J. Malchaire

Stage 2: air movements

Actual situation

Causes and sources

- -2 . cold strong air movements
- -1 . cold light air movements
- 0 . no air movements
- 1 . warm light air movements
- 2 . warm strong air movements

Actions of prevention – improvement

Reduce or eliminate air draughts Use screens to protect locally against draughts Locate workstations away from air draughts

Future situation

Stage 2: Thermal radiation

Actual situation

1

Causes and sources

- -1 Cold on the face after 2-3 minutes
- 0 No radiation discernible
- Warm on the face after 2-3 minutes
- 2 Unbearable on the face after > 2 minutes
- 3 Immediate burning sensation

Actions of prevention – improvement

- •Reduce the radiating surfaces
- •Use reflecting screens
- •Insulate or treat the radiating surface
- •Locate workstations away from radiating surfaces
- •Use special protective clothes reflecting radiation
- •...

Future situation

BOHS 15-11-2001 J. Malchaire

Stage 2: workload

Actual situation

Causes and sources

- 0 . office work: easy low muscular constraints,
- 1 occasional movements at normal speed.
- 2 . Moderate work with arms or legs . Intense work with arms and trunk
- 3 . very intense work at high speed: stairs, ladders

Actions of prevention – improvement

- Reduce the movements during work
- Reduce displacements
- Reduce the speed of movements
- Reduce the efforts, use mechanical assistance... Improve the postures...
- Future situation

Stage 2: clothing

Actual situation

Causes and sources

- 0 light, flexible, not interfering with the work
- 1 long, heavier, interfering slightly with the work
- 2 clumsy, heavy, special for radiation, humidity
- 3 special overalls with gloves, hoods, shoes

Actions of prevention – improvement

- Improve the design of the clothing
- Select more suitable materials
- Look for lighter materials
- . . .

Future situation

BOHS 15-11-2001 J. Malchaire

OBSERVATION: Synthesis

Characteristics of the actual situation

	-3	-2	-1	0	1	2	3
Air temperature							0
Humidity						0	
Radiation					0		
Air movements				0			
Work Load						0	
Clothing							0

Stage 2: Opinion of the workers

Actual situation

- -3 shivering, strong discomfort for the whole body
- -2 strong local discomfort overall sensation coolness
- -1 slight local cool discomfort
- 0 no discomfort
- 1 slight sweating and discomfort thirst
- 2 heavy sweating, work pace modified
- 3 excessive sweating, special clothing

Future situation

BOHS 15-11-2001 J. Malchaire

N29

OBSERVATION: Synthesis

Comparison before and after improvements

	-3	-2	-1	0	1	2	3
Air temperature						Х	0
Humidity					Х	0	
Radiation					=		
Air movements				=			
Work Load					Х	0	
Clothing					Х		0

OBSERVATION: Conclusions

- Decide whether a more detailed ANALYSIS is needed to quantify and to solve the problem.
- Determine the measures to be taken in the short-term if needed:
 - Drinks
 - Recovery periods
 - Work organisation
 - Clothing....

BOHS 15-11-2001 J. Malchaire

ANALYSIS: Objectives

- For the conditions selected during stage 2: OBSERVATION
 - To quantify the risk of thermal discomfort or
 - To Identify more elaborated solutions
 - To determine the optimum work organisation.
 - To determine whether an EXPERTISE (stage 4) is needed.

Stage 3: ANALYSIS

BOHS 15-11-2001 J. Malchaire

33

Stage 3: ANALYSIS

- Deal with specific conditions
- Usually involve measurements
- Conducted with the assistance of OH practitioner with adequate training
 - To find technical solutions
 - To define organisational solutions and short-term protection measures

Conclusions

Is the assistance of an Expert required?

ANALYSIS: Procedure Criteria for ANALYSIS Analyse the sequence of activities: **Designed for OH practitioner** Description of the activities. Use common concepts and techniques Mean and maximum durations. If necessary, simple measurements to identify Period concerned by the working situation. the causes of the problems Exposed workers ♦ the solutions Useable in less than one day Oriented towards prevention 37 BOHS 15-11-2001 J. Malchaire BOHS 15-11-2001 J. Malchaire **ANALYSIS:** Synthesis ANALYSIS: Procedure Activity ... Activity ... ANALYSIS of the working situation during Max mean mean max representative period(s) of time ta Measurement or estimation of the mean and maximum RH values Ιq Computation of the indices PMV - PPD, PHS Va М Clo **PMV** PPD WBGT

PHS / DLF

ANALYSIS: Interpretation

Risk in the present situation

BOHS 15-11-2001 J. Malchaire

PMV < -2
-2 < PWV < -0,5
-0,5 < PMV < 0,5
0,5 < PMV < 2
DLE < 480 min
DLE < 120 min
DLE < 30 min

ANALYSIS: Procedure

- Determine the acceptability of the working condition by comparing:
 - mean-maximum duration of each activity
 - the DLEs.

BOHS 15-11-2001 J. Malchaire

 $\overline{\lambda}_{41}$

- Define prevention/control techniques
- Define the optimum work organisation.
- Determine the residual risk after implementation of these prevention/control measures.

ANALYSIS:	S	yn	th	es	is

	Activity	Activity
3. RISK		
Class of risk		
 If heat stress 		
Sweating rate		
 Water loss per day 		
• DLE		
4. ACCEPTABILITY		
5. PREVENTION/CONTROL MEASURES		
6. RESIDUAL RISK		
7. NEED FOR AN EXPERTISE		
8. SHORT TERM MEASURES		
9. MEDICAL SURVEILLANCE		

Stage 4: EXPERTISE

Stage 4: EXPERTISE

- Better characterise some heat or cold sources and/or some unusual circumstances
 - Specific measurements
 - Specific investigation techniques
- · Characterize the overall exposure of the workers
- Look for sophisticated prevention/control measures

Stage 4: EXPERTISE

- Sequence of activities:
- Specialised measurements:
 - Radiation, air circulation,...
 - Metabolic rate: Oxygen consumption, HR
 - Clothing insulation
 - Time variations
- Computation of indices according to time:

PMV - PPD, Predicted Heat Strain

BOHS 15-11-2001 J. Malchaire

N45

Prevention Strategy

The Biomed research

Predicted Heat Strain

ISO 7933 "Required Sweat Rate"

- Main criticisms concerned:
 - The prediction of the skin temperature
 - The influence of the clothing on convection, radiation and evaporation
 - The increase of core temperature linked to the activity
 - The prediction of the sweat rate in very humid conditions
 - The limiting criteria and in particular the "alarm" and "danger" level
 - ◆ The maximum water loss allowed.

BOHS 15-11-2001 J. Malchaire

Predicted skin temperature (1/4)

- ♦ ISO 7933 algorithm
 - Based on a limited set of data
 - For mainly nude subjects.
 - Skin temperature decreases with the clothing

Partners in the BIOMED research:

• 8 European labs

- J. Malchaire, catholic university of Louvain, Belgium
- H. Gebhardt, ASER, Germany
- B. Griefahn, P. Mehnert, IFADO, Germany
- B. Kampmann, institut für arbeitswissenschaften, G.
- G. Alfano, universita di Napoli, Italy
- G. Havenith, E. Den Hartog, TNO, The Netherlands
- I. Holmér, Arbetsmiljöinstitutet, Sweden
- K. Parsons, Loughborough university, UK

BOHS 15-11-2001 J. Malchaire

A49

Predicted skin temperature (2/4)

- Material and Methods
 - HEAT database
 - Selection of data points in steady state conditions
 - Only data from MALE subjects
- T_{SK} database: 1999 data points (from 1399 conditions with 377 male subjects)
 - Separate analysis for nude (≤ 0.2 clo) and clothed (0.6 ≤ lcl ≤ 1.0) subjects
 - Multiple linear regression technique (with resampling: non-parametric bootstrap)

Maximum sweat rate: SW_{max}

- ISO 7933 assumes constant values of maximum sweat rate for acclimatised and unacclimatised subjects
- SW_{max} = 2.6 (M 58) g/h
 - for M < 300 watts : 650 g/h</p>
 - Iimited to 1000 g/h for unacclimatised subjects
- For acclimatised subjects:
 - maximum capacity increase by 25%
 - sweating in a given environment can be greater by a factor 2

Max dehydration and water loss (1/2)

- ISO 7933 limit values questioned in the field, and particularly in mines
- Maximum tolerable <u>dehydration</u> to be considered only in less severe conditions
 - 2% body mass: threshold for thirst stimulation
 - 3% body mass: increase in heart rate and sweating

BOHS 15-11-2001 J. Malchaire

Max dehydration and water loss (2/2)

- with exposure 4 to 8 hour
 - average rehydration rate of 60%
 - rehydration rate greater than 40% for 95% of the subjects
- Maximum <u>water loss</u>
 - 7.5% of the body mass for an average subject
 - 5% of the body mass for 95% of the working population

Limit criteria: ISO7933 (1/3)

- ISO 7933 limits for acclimatised and unacclimatised subjects
- 2 levels of protection:
 - "alarm" level: to protect the entire population
 - "danger" level: to protect most of the workers.
- Criteria too vague and too stringent.
- Prediction

- ♦ for the "average" subject
- ♦ for percentile 95%

Limit of internal temperature (1/3)

- WHO document 1969: Limit of 38°C
 - "It is inadvisable for deep body temperature to exceed 38°C in prolonged daily exposure to heavy work."
 - commonly adopted and implicitly adopted in ISO 7933
 - Document often quoted and altered

Limit of internal temperature (2/3)

- Maximum rectal temperatures:
 - 42°C : the maximum internal temperature to avoid any physiological sequels
 - 39.2°C : "may rapidly lead to total disability in most men with excessive, often disturbing, physiological changes"

BOHS 15-11-2001 J. Malchaire

BOHS 15-11-2001 J. Malchaire

Limit of internal temperature (3/3)

- Maximum probabilities:
 - for 42°: < 10⁻⁶: <1 heat stroke every 4 years among 1000 workers (250 days/year)
 - for 39.2°: < 10⁻³: <1 person at risk among 1000 shifts.

Main modifications<u>PHS</u>

- 1. Prediction of t_{sk}
- 2. Prediction of heat exchanges
- 3. Prediction of heat storage
- 4. Prediction of $t_{\rm re}$ taking into account the heat storage in the skin layer
- 5. Prediction of DLE:

total water loss 7.5 and 5%

 $t_{re} = 38^{\circ}C$

Predicted Heat Strain PHS

VALIDATION

Database: 1113 experiments

- the primary parameters (t_a, p_a...)
- the physiological factors (t_{re}, sweat rate...)

	Number of experiments
Lab experiments	747
Subset 1	369
Subset 2	378
Field experiments	366
Men	1020
Women	93
Not acclimatised	452
Acclimatised	661
Nude experiments	244
Clothed experiments	869

BOHS 15-11-2001 J. Malchaire

BIOMED database

 Means, standard deviations and 95% confidence interval for the 6 parameters, 672 lab experiments, 95689 points

		m	S	95% confidence interval
air temperature	t _a (°C)	30.85	9.14	12.94 - 48.75
humidity	p _a (kPa)	1.95	1.26	0 - 4.42
radiation	t _r -t _a (°C)	15.42	21.80	0 - 58.15
air velocity	v _a (m/s)	0.40	0.25	0 - 0.90
metabolic rate	M (W)	243	114	20 - 467
clothing insulation	(clo)	0.38	0.34	0 - 1.05

Ranges of validation

Ranges of validity of the PHS model						
	Min	Max				
t _a °C	15	50				
P _a kPa	0	4.5				
t _r -t _a °C	0	60				
v _a m/s	0	3				
M W	100	450				
l _{ci} clo	0.1	1.0				

Validation in lab experiments: t_{re}

- Observed and predicted rectal temperature
- 95% confidence interval

Validation in field experiments:SW

- Observed and predicted sweat rates
- 95% confidence interval

Validation in field experiments:SW

Ν	237
Observed (m ±s)	317 ± 187
Predicted (m ±s)	344 ± 132
Slope	1.056
Intersection	- 4 6
r	0.7448

 $SW_{obs} = 1.056 SW_p - 46 R = 0.74$ $SW_{obs} = 0.851 * SW_p$

BOHS 15-11-2001 J. Malchaire

Validation in field experiments: t_{re}

Ν	1 0 2 8
Observed (m±s)	37.40 ± 0.44
Predicted (m ±s)	37.40 ± 0.34
Slope	0.770
Intersection	8.60
r	0.5940

 $t_{re obs} = 0.770$ $t_{re p} + 8.60$ R = 0.59 $t_{re obs} = 1.000 * t_{re p}$

Validation in field experiments: t_{re}

- Observed and predicted rectal temperature
- 95% confidence interval

COMPARISON BETWEEN

PHS MODEL AND ISO7933

PHS model validation: conclusions

- good correlation between observed and predicted
- In view of the inter-individual differences

BOHS 15-11-2001 J. Malchaire

Predicted sweat rate

	LAB EXPERIMENTS			FIELD EXPERIMENTS		
	(n = 672)			(n = 237)		
	Slope	Inters	r	Slope	Inters	r
SWISO	0.757	75	0.744	0.663	52	0.523
PHS model	0.848	41	0.760	1.056	-46	0.745

N87

	Range	Step	Number of values
Air temperature (°C)	20 - 50	5	7
Relative humidity (%)	20 - 80	20	4
$(t_r - t_a)$ (°C) (but t_r limited at 60°C)	0 - 40	10	<5
Air velocity (ms ⁻¹)	0.01 - 2	0.5	5
Metabolic rate (W)	100 - 450	50	7
Clothing insulation (clo)	0.6	-	1

WBGT according to ISO 7243
WBGT_{limit} = 34.3 - M / 35.5 (with M in W).

_

DLE_{PHS} Vs (WBGT - WBGT_{limit})

• 3 conditions with the same WBGT difference:

t _a °C	RH %	t _r °C	$v_a ms^{-1}$	M W	clo	WBGT	WBGT _{lim}
40	20	40	1.0	450	0.6	27.6	21.6
25	60	45	0	350	0.6	30.4	24.4
30	80	60	1.5	300	0.6	31.7	25.8

- According to the PHS model:
- DLE respectively 30, 236 and 425 minutes.
- → WBGT plays role of screening method

DLE_{PHS} Vs (WBGT - WBGT_{limit})

 Evolution of the rectal temperature predicted by PHS

Conclusion

- WBGT imposes work duration limitations even in cases where, according to the PHS model, work would still be permitted for 8 hours continuously.
- OK: WBGT screening method

